Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3014, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589406

RESUMO

The biological underpinnings of therapeutic resistance to immune checkpoint inhibitors (ICI) in adolescent and young adult (AYA) melanoma patients are incompletely understood. Here, we characterize the immunogenomic profile and spatial architecture of the tumor microenvironment (TME) in AYA (aged ≤ 30 years) and older adult (aged 31-84 years) patients with melanoma, to determine the AYA-specific features associated with ICI treatment outcomes. We identify two ICI-resistant spatiotypes in AYA patients with melanoma showing stroma-infiltrating lymphocytes (SILs) that are distinct from the adult TME. The SILhigh subtype was enriched in regulatory T cells in the peritumoral space and showed upregulated expression of immune checkpoint molecules, while the SILlow subtype showed a lack of immune activation. We establish a young immunosuppressive melanoma score that can predict ICI responsiveness in AYA patients and propose personalized therapeutic strategies for the ICI-resistant subgroups. These findings highlight the distinct immunogenomic profile of AYA patients, and individualized TME features in ICI-resistant AYA melanoma that require patient-specific treatment strategies.


Assuntos
Melanoma , Humanos , Adolescente , Adulto Jovem , Idoso , Melanoma/terapia , Imunoterapia , Linfócitos T Reguladores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico , Microambiente Tumoral
2.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241401

RESUMO

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA
3.
Front Immunol ; 13: 979993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003398

RESUMO

While the tumor immune microenvironment (TIME) of metastatic melanoma has been well characterized, the primary melanoma TIME is comparatively poorly understood. Additionally, although the association of tumor-infiltrating lymphocytes with primary melanoma patient outcome has been known for decades, it is not considered in the current AJCC melanoma staging system. Detailed immune phenotyping of advanced melanoma has revealed multiple immune biomarkers, including the presence of CD8+ T-cells, for predicting response to immunotherapies. However, in primary melanomas, immune biomarkers are lacking and CD8+ T-cells have yet to be extensively characterized. As recent studies combining immune features and clinicopathologic characteristics have created more accurate predictive models, this study sought to characterize the TIME of primary melanomas and identify predictors of patient outcome. We first phenotyped CD8+ T cells in fresh stage II primary melanomas using flow cytometry (n = 6), identifying a CD39+ tumor-resident CD8+ T-cell subset enriched for PD-1 expression. We then performed Opal multiplex immunohistochemistry and quantitative pathology-based immune profiling of CD8+ T-cell subsets, along with B cells, NK cells, Langerhans cells and Class I MHC expression in stage II primary melanoma specimens from patients with long-term follow-up (n = 66), comparing patients based on their recurrence status at 5 years after primary diagnosis. A CD39+CD103+PD-1- CD8+ T-cell population (P2) comprised a significantly higher proportion of intratumoral and stromal CD8+ T-cells in patients with recurrence-free survival (RFS) ≥5 years vs those with RFS <5 years (p = 0.013). Similarly, intratumoral B cells (p = 0.044) and a significantly higher B cell density at the tumor/stromal interface were associated with RFS. Both P2 and B cells localized in significantly closer proximity to melanoma cells in patients who remained recurrence-free (P2 p = 0.0139, B cell p = 0.0049). Our results highlight how characterizing the TIME in primary melanomas may provide new insights into how the complex interplay of the immune system and tumor can modify the disease outcomes. Furthermore, in the context of current clinical trials of adjuvant anti-PD-1 therapies in high-risk stage II primary melanoma, assessment of B cells and P2 could identify patients at risk of recurrence and aid in long-term treatment decisions at the point of primary melanoma diagnosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Biomarcadores , Humanos , Imunofenotipagem , Melanoma/patologia , Microambiente Tumoral
4.
Pigment Cell Melanoma Res ; 34(3): 529-549, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32939993

RESUMO

The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Microambiente Tumoral , Animais , Humanos , Melanoma/patologia , Melanoma/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia
5.
Nat Cancer ; 1(2): 197-209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-33305293

RESUMO

Primary melanomas >1 mm thickness are potentially curable by resection, but can recur metastatically. We assessed the prognostic value of T cell fraction (TCFr) and repertoire T cell clonality, measured by high-throughput-sequencing of the T cell receptor beta chain (TRB) in T2-T4 primary melanomas (n=199). TCFr accurately predicted progression-free survival (PFS) and was independent of thickness, ulceration, mitotic rate, or age. TCFr was second only to tumor thickness in its predictive value, using a gradient boosted model. For accurate PFS prediction, adding TCFr to tumor thickness was superior to adding any other histopathological variable. Furthermore, a TCFr >20% was protective regardless of tumor ulceration status, mitotic rate or presence of nodal disease. TCFr is a quantitative molecular assessment that predicts metastatic recurrence in primary melanoma patients whose disease has been resected surgically. This study suggests that a successful T cell-mediated antitumor response can be present in primary melanomas.


Assuntos
Melanoma , Humanos , Melanoma/genética , Linfócitos T/patologia
6.
PLoS One ; 15(4): e0226444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240177

RESUMO

Glioblastoma, the most aggressive form of glioma, has a 5-year survival rate of <5%. While radiation and immunotherapies are routinely studied in the murine Gl261 glioma model, little is known about its inherent immune response. This study quantifies the temporal and spatial localization of immune cell populations and mediators during glioma development. Eight-week old male C57Bl/6 mice were orthotopically inoculated with 1x106 Gl261 cells and tumor morphology, local and systemic immune cell populations, and plasma cytokines/chemokines assessed at day 0, 1, 3, 7, 14, and 21 post-inoculation by magnetic resonance imaging, chromogenic immunohistochemistry, multiplex immunofluorescent immunohistochemistry, flow cytometry and multiplex immunoassay respectively. From day 3 tumors were distinguishable with >30% Ki67 and increased tissue vascularization (p<0.05). Increasing tumor proliferation/malignancy and vascularization were associated with significant temporal changes in immune cell populations within the tumor (p<0.05) and systemic compartments (p = 0.02 to p<0.0001). Of note, at day 14 16/24 plasma cytokine/chemokines levels decreased coinciding with an increase in tumor cytotoxic T cells, natural killer and natural killer/T cells. Data derived provide baseline characterization of the local and systemic immune response during glioma development. They reveal that type II macrophages and myeloid-derived suppressor cells are more prevalent in tumors than regulatory T cells, highlighting these cell types for further therapeutic exploration.


Assuntos
Glioma/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem da Célula/imunologia , Proliferação de Células/genética , Quimiocinas/sangue , Quimiocinas/imunologia , Citocinas/sangue , Citocinas/imunologia , Progressão da Doença , Citometria de Fluxo , Glioma/sangue , Glioma/patologia , Humanos , Células Matadoras Naturais/metabolismo , Camundongos , Linfócitos T Citotóxicos/metabolismo
8.
Oncoimmunology ; 8(2): e1537581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713793

RESUMO

Purpose: Anti-PD-1 therapy has revolutionized the treatment and improved the survival of stage IV melanoma patients. However, almost half of the patients fail to respond due to immune evasive mechanism. A known mechanism is the downregulation of major histocompatibility complex (MHC) class I expression, which prevents T cell recognition of the tumor. This study determined the relationship between natural killer (NK) cell numbers and clinical response to anti-PD-1 therapy in metastatic melanoma. Experimental Design: Twenty-five anti-PD-1 treated metastatic melanoma patients were categorized into responders (complete response (CR)/partial response (PR)/stable disease (SD) ≥ 6 mo, n = 13) and non-responders (SD < 6 days/progressive disease (PD), n = 12) based on RECIST response. Whole transcriptome sequencing and multiplex immunofluorescent staining were performed on pre-treatment and on a subset of early during treatment tumor samples. Spatial distribution analysis was performed on multiplex immunofluorescent images to determine the proximity of NK cells to tumor cells. Flow cytometry was used to confirm NK phenotypes in lymph node metastases of treatment naïve melanoma patients (n = 5). Cytotoxic assay was performed using NK cells treated with anti-PD-1 or with isotype control and co-cultured with 3 different melanoma cell lines and with K562 cells (leukemia cell line). Results: Differential expression analysis identified nine upregulated NK cell specific genes (adjusted p < 0.05) in responding (n = 11) versus non-responding patients (n = 10). Immunofluorescent staining of biopsies confirmed a significantly higher density of intra- and peri-tumoral CD16+ and granzyme B + NK cells in responding patients (p < 0.05). Interestingly, NK cells were in closer proximity to tumor cells in responding PD-1 treated patients compared to non-responding patients. Patients who responded to anti-PD-1 therapy, despite MHC class I loss had higher NK cell densities than patients with low MHC class I expression. Lastly, functional assays demonstrated PD-1 blockade induces an increase in NK cells' cytotoxicity. Conclusions: A higher density of tumoral NK cells is associated with response to anti-PD-1 therapy. NK cells may play an important role in mediating response to anti-PD-1 therapy, including in a subset of tumors downregulating MHC class I expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...